T-DNA insertional mutagenesis for functional genomics in rice.
نویسندگان
چکیده
We have produced 22 090 primary transgenic rice plants that carry a T-DNA insertion, which has resulted in 18 358 fertile lines. Genomic DNA gel-blot and PCR analyses have shown that approximately 65% of the population contains more than one copy of the inserted T-DNA. Hygromycin resistance tests revealed that transgenic plants contain an average of 1.4 loci of T-DNA inserts. Therefore, it can be estimated that approximately 25 700 taggings have been generated. The binary vector used in the insertion contained the promoterless beta-glucuronidase (GUS) reporter gene with an intron and multiple splicing donors and acceptors immediately next to the right border. Therefore, this gene trap vector is able to detect a gene fusion between GUS and an endogenous gene, which is tagged by T-DNA. Histochemical GUS assays were carried out in the leaves and roots from 5353 lines, mature flowers from 7026 lines, and developing seeds from 1948 lines. The data revealed that 1.6-2.1% of tested organs were GUS-positive in the tested organs, and that their GUS expression patterns were organ- or tissue-specific or ubiquitous in all parts of the plant. The large population of T-DNA-tagged lines will be useful for identifying insertional mutants in various genes and for discovering new genes in rice.
منابع مشابه
T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics
With the availability of complete genome sequences of several organisms, the focus has shifted from structural genomics to functional genomics, specifically in plants where the complete genomic sequences are becoming available i.e., Arabidoposis and rice. Agrobacterium mediated transformation which is exploited for transgenic technology is also being used as an effective mutagen and as a tool f...
متن کاملComparison and Validation of Putative Pathogenicity-Related Genes Identified by T-DNA Insertional Mutagenesis and Microarray Expression Profiling in Magnaporthe oryzae
High-throughput technologies of functional genomics such as T-DNA insertional mutagenesis and microarray expression profiling have been employed to identify genes related to pathogenicity in Magnaporthe oryzae. However, validation of the functions of individual genes identified by these high-throughput approaches is laborious. In this study, we compared two published lists of genes putatively r...
متن کاملOryGenesDB: a database for rice reverse genetics
Insertional mutant databases containing Flanking Sequence Tags (FSTs) are becoming key resources for plant functional genomics. We have developed OryGenesDB (http://orygenesdb.cirad.fr/), a database dedicated to rice reverse genetics. Insertion mutants of rice genes are catalogued by Flanking Sequence Tag (FST) information that can be readily accessed by this database. Our database presently co...
متن کاملA versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants.
Transposon insertional mutagenesis is an effective alternative to T-DNA mutagenesis when transformation through tissue culture is inefficient as is the case for many crop species. When used as activation tags, transposons can be exploited to generate novel gain-of-function phenotypes without transformation and are of particular value in the study of polyploid plants where gene knockouts will no...
متن کاملFunctional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.
The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2000